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Absu-act

An ex_timental study is conducted to examine the

crossplane structure and streamwise decay of vortices
shed from airfoil-type vortex generators. The vortex gen-

erators are set in a counter-rotating array spanning the

full circumference of a straight pipe. The span of the

vortex generators above the duct surface, h, is approxi-

mately equal to the local turbulent boundary layer thick-
hess, 6. Measurement of tluee-component mean flow ve-

locity in downstream crossplanes are used to characterize
the structure of the shed vortices. Measurements in ad-

jacent erossplanes (closely spaced along the streamwise

coordinate) characterize the interaction and decay of the

embedded vortices. A model constructed by the super-
position of Oseen vortices is compared to the data for
one test case.

Motivation and Research Objectives

Modem design characteristics of aircraft engine in-

lets, diffusers, and associated ducting components include
large amounts of strenmwise curvatme coupled with rapid

axial variations in cross-sectional area. The flow perfor-

mance of these components is degraded by the devel-

opment of strong internal secondary flows and boundary

layer separations. Surface mounted vortex generators are

an effective means of alleviating these problems. Recent

experimental work at NASA Lewis has explored the strat-

egy of using vortex generator induced flows to counter

deleterious secondary flow development and boundary

layer separation inside a diffusing S-dueL 1 Dramatic im-

provements in total pressure recovery and exit plane flow

distortion were demonstrated. An experimental program

to test candidate designs for the new High Speed Research
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(HSR) diffuser is currently in the planning stages. Sur-

face mounted vortex generators are being considered as a

means of enhancing the performance of the HSR diffuser.

Arrays of vortex generators may be studied to deter-

mine what vortex generator size, spacing, and streamwise

location produces optimal flow conditions in a particular

duct operating at a particular condition. This can be done

experimentally, as in Reference 1. However, due to the

large number of poss_le vortex generator array parame-

ter variations, optimization may be best suited for com-

putational work. The effort required for a computational

study hinges on the manner in which the vortex gener-

ators are represented in the analysis. A particularly ef-

fective approach is to model the shed vortex immediately

downstream of the vortex generator, rather than model

the vortex generator by including it in the gridwork of

the duct. The advantage here lies in the fact that a newly

formed vortex may be accurately represented as a stream-

wise vorticity or crossplane velocity distribution having

a simple exponential form. This is the approach taken in

recent work by Anderson and Gibb, 2 and Anderson and

Farokhi, 3 where multiple vortex generator array geome-

tries in a diffusing S-duct inlet were examined using a

parabolized Navier-Stokes (PNS) solver. The crossplane

slxucmre of embedded vortices shed from vortex gener-

ators may be characterizedin terms of quantitiesknown

as vortex "descriptors". The modelled vortices are based

on these descriptors. Following the work of Westphal et

al. 4 we identify three descriptors:

I. Peak streamwise vorticity: _Orn,: is an indication
of vortex concenwation. The larger the magnitude

of peak vordcity, the thinner and more concentrated
the vortex structure.

2. The crossplane location of ¢ama=. This location

corresponds to the center of the vortex, the point

about which the vortex spins.

3. Circulation: F is a measure of the vortex strength.

In an ongoing research program at NASA Lewis, a

set of experimental studies are being conducted to acquire

the database necessary for simple analytical modelling of

all types of common vortex generators. A recently com-

pleted study on the sub-boundary layer scaled "wishbone"

vortex generator has provided detailed datasets and corre-

sponding descriptors for the modelling of this type of vor-

tex generator over a limited Mach number and Reynolds

number range: This paper describes a similar experimen-

tal study of blade or airfoil-type vortex generators. The
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Figure 1 The Internal Fluid Mechanics Facility of NASA Lewis.

vortex generators are mounted in a symmetric counter-

rotating array which spans the full interior circumference

of a circular pipe. A thin tarbulent boundary layer is

developed upstream of this array. The boundary layer
thickness, 6, is approximately 4% of the pipe diameter,

d, at the axial location of the vortex generators.

The primary objective of this study is to examine
the crossplane slructure and streamwise decay of vor-

tices shed from airfoil-type vortex generators. Vortex de-

scriptors are derived fxom crossplane measurements of

three-component mean flow velocities acquired with a

rake probe. Crossplane grid resolution is greater than in

previous studies, and axial separation (Az) between ad-
jacent crossplanes is much finer, with Az _ 8. Simple

analytical models of the induced crossplune distributions

of velocity and vorticity are constructed with the vortex

descriptors. These will be compared against the data.

subsonic facility designed to investigate a variety of duct

flow phenomena. The facility, as it is configured for this
test, is illustrated in Figure 1. Air is supplied from the

surrounding test cell to a large settling chamber contain-

ing honeycomb and screens. At the downstream end of
the settling chamber the airstream is accelerated through

a conWaction section (having a cross-sectioual area reduc-

tion of 59 to 1) to the test section duct. The test section

duct consists of a straight circular pipe of inside diame-

ter d = 20.4 cms. After exiting the test section duct the
airstream enters a short conical diffuser and is then muted

to a discharge plenum which is continuously evacuated

by central exhaustex facilities. The Mach number range
in the test section duct is between 0.2 and 0.8 with cor-

responding Reynolds numbers (based on pipe diameter)
between 0.95 and 3.80 million. Mass flows are between

3 and 7 kgs/sec. More information on the design and op-

eration of the IFMF may be found in the report of Porto
et al. 6

Facilities and Procedures

Test Facility

This study is conducted in the Internal Fluid Me-

chanics Facility (IFMF) of NASA Lewis. The IFMF is a
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Figure 2 A cut-away sketch of the test section duct.
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Figure 3 The airfoil vortex generator.

Research Instrumentation and Test Parameters

Figure 2 is a detailed sketch of the various test

section components.

A short section of straight pipe (labeled "inlet pipe"

in Figure 2) connects the exit of the facility contraction
to the duct segment containing the vortex generator array.

Static pressure taps located on the surface of the inlet pipe
allow the nominal core Mach number in the test section

to be set and monitored.

The duct portion with vortex generators is referred
to as the "vortex generator duct". The inside surface of

the vortex generator duct (and hence the attached vortex

generator array) rotates about an axis coinciding with
the test section centerline. A rotation of 360 degrees

is possible. The rotation is driven by a motor and gear

located in an airtight box above the vortex generator duct.

A vortex generator is illustrated in Figure 3. These

vortex generators consist of an airfoil-shaped blade (with

a NACA 0012 profile) mounted perpendicular to the
surface of a base plug. The surface of the base plug is

contoured to the inside radius of the vortex generator duct.

Both blade and plug are machined flom an aluminum

alloy using a wire cutting (electric discharge machining)

process.

The vortex generator array consists of 12 blades,

identical in geometry, but alternating in angle of attack,

t_ = 4-16 degrees. Figure 4 is a downstream view of

the vortex generator duct showing the array of vortex

generators. The vortex generators are equally spaced,

circumferentially, at mid-chord. A0b between the mid-

chord position of adjacent blades is 30 degrees, where 0
is the circumferential coordinate.

The coordinate system used in this study originates

in the vortex generator duct. z = 0 coincides with the

trailing edge of the vortex generator array. The axial
locations of downstleam (r, 0) crossplanes are given in

terms of blade chord, c. For example, the first survey

location possible is the (r, 0) crossplane located at z =
0.38c, where c = 4.06 cms.

The duct segment downstream of the vortex gener-

ator duct is stationary (non-rotating). This test section

segment is referred to as the "instrumentation duct". The
flowfield measurements are acquired in this duct through

the use of a radially actuated rake-probe indicated in Fig-

ure 2. To acquire data in an (r, 0) crossplane, the rake-

probe is actuated over a radial segment extending from
the duct wall to the duct centerline. The vortex gener-

ator duct and vortex generator array are then rotated an

increment in circumferential position, A0, and the radial

•survey repeated. In this manner pie-shaped pieces of the

flowfield are examined. A narrow slot running the ap-

proximate length of the instrumentation duct allows the

rake-probe to be located at various downstream cross-

planes. A series of slot-sealing blocks determines the
allowable axial location of survey crossplanes, zi:

zi = 0.38c, 1.00c, ..., 10.38c,
(1)

14.75c, 15.38c, ..., 24.7Bc.

The rake-probe consists of 4 seven-bole probe tips

spaced 2.54 cms apart. These probes are calibrated in
accordance with the procedure outlined by Zilliac. 7 The

flow angle range covered in calibration is 4-60 ° in both

pitch and yaw for the probe tip closest to the wall. The

calibration range for the outer 3 tips is approximately

+30 ° . Uncertainty in flow angle measurement is 4-0.7 °

in either pitch or yaw, for flow angle magnitude below
30 degrees (pitch and yaw flow angle magnitude did not

exceed 30 degrees in this study). The corresponding

uncertainty in velocity magnitude is approximately 4-1%

of the core velocity, Vzc.

Rotatable Inner Cylinder
of Vortex Generator Duct

Vortex Generator Leading
Edges

Vortex Generator Trailing
Edges

_30o_ ',

Fig. 4 The vortex generator array.



Experimental Results

Figures 5a-k illustrate the experimental results. On

the left in Figure 5 are vector plots of crossplane (or

"transverse") velocity. The radial axis represents distance

from the wall, in centimeters, and the circumferential axis

represents angular position in degrees. In the middle

of Figure 5 are the corresponding contours of primary

velocity ratio, v,/vzc, where v=c _, 85 ndsec is the

core velocity of the pipe (this corresponds to a nominal
test section Mach number M = 0.25). On the right

hand side of Figure 5 are plots of streamwise vorticity.

These results are derived fIom the transverse velocity data

following the relation:

6ve ve 1 6v_
wz = "_r -t- (2)r r 6e'

where w2 is the streamwise component of vorticity, and

(v,, v0) are the transverse components of velocity in
the radial and circumferential coordinates, respectively.

Finite difference formulas are used to represent the spatial

derivatives in Eq. (2). Solid contour lines represent

negative vortieity, dashed lines are positive. The axial

location of each crossplane is indicated in Figure 5.
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Figure 5 Velocity and streamwise vorticity results. (Continued...)
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Crossplane grid resolution for these surveys is based

on the size of the vortex core. At axial locations just

downstream of the vortex generator the vortex core is

small and highly concentrated with large secondary ve-

locities present. To properly capture vortex structure the

grid resolution must be greater here than at locations far

downstream where the developing core has grown larger
and more diffuse. Thus, in Figures 5a-h, Ar = 1.3 nun

and A0 = 1.0 degree in the vicinity of the core; and

in Figures 5i-k, Ar = 1.7 mm and A0 = 1.5 degrees.

Although the full pie-sector (firom pipe wall to center-
line) was surveyed, only the portion of the grid closest to

the wall and embedded vortex is plotted. This is done to

save space in Figure 5. The survey grid covers somewhat
more than a 30 degree sector of the pipe cross-section.

A 30 degree sector coincides with the circumferential do-
main occupied by one vortex generator (hence the single

vortex observed in each of the crossplane plots of Fig-

ate 5). For the counter-rotating arrangement of vortex

generators tested in this study the full flowiield is (ide-
ally) a 12 unit multiple of this pie-sector, alternating in

the rotation of the shed vortex from one 30 degree sector

to the next. The circumferential component of velocity

(v0), and hence the crossflow, is expected to vanish at

the boundaries of the pie-sector where the influence of
the neighboring vortex begins. We note from Figure 5

(particularly Figures 5e-k) this is approximately the case,
with the boundary between the domain of the illustrated

vortex and the domain of its nearest neighbor located at

0 -- 79 or 80 °. A portion ofthe adjacent sector (0 _< 80 °)

and neighboring vortex is visible in Figure 5. The illus-

trated vortex and its neighbor constitute an up]tow pair

of counter-rotating vortices. Upflow pairs have a strong

tendency to pull together and lift away from the wall, and

this is clearly evident in Figure 5.

In Figures 5a-b we see a s_rong, concentrated vortex

structure. At the z ----1.00c position (Figure 5b) contours

of primary velocity ratio show two distinct regions of

v_ deficit in the vicinity of the vortex core. One region

appears to be a convection of low momentum boundary
layer fluid found near the wall and wrapping around the

core on the fight-hand side; the other region is associ-

ated with the central portion of the vortex core. This

characteristic double deficit persists downstream of the

z = 1.00c position. Interestingly, however, the central
core vz deficit is not nearly as pronounced further up-

stream at the z = 0.38c position. Here the central or

core primary velocity strUCaLr¢ is much more complex,

with what appears to be two separate deficit regions. The

primary velocity ratio contours in Figure 5 also illus-
trate the altemam thinning and thickening of the bound-

ary layer in the core downwash and upwash, respectively.

The upwelling of boundary layer fluid produced by the
strong convection of the torturer-rotating vortex pair is

quite pronounced at the downstream survey locations. In

Figure 5k an indication of the crossplane profile of the

vortex generator is provided. The cruciform of dashed

lines identifies the trailing edge tip.

The three previously defined structural descriptors

of the embedded vortex originate from the streamwise

vorticity and transverse velocity data in the crossplane.

_,_ is located at some grid point having coordinates

(r,_a_, 0,r,ax)- The vortex circulation F is calculated by

first isolating the region of core vorticity in the data field.
This is done by referring to the contour plots of vorticity

in Figure 5. A path enclosing the region of core vorticity

is defined. The outer boundary of the core is taken to be

the location where streamwise vorticity is 1% of the peak

core value. The circulation is then calculated according

to:

V- ds, (3)

path

where V is the velocity vector in the crossplane, and

s refers to the path coordinate. By using closed paths

composed of line segments in the r or 0 coordinate

directions the circulation is easily determined.



AxialLocation,7/c Circulation PeakVort_ CrossplaneLocation
of Pmd_Yortidty

m2/sec sec'l (cms,deg)*

KineticF_merl_Ratio

lmviscidAirfd TheoryEst. .0.753 -- (1.02,90.5)**
0.38 -0.733 -34655 (0.,89,93) 0.0078
1.00 -0.722 .-3_14 (0.89,92) 0.0072
1.62 -0.698 .33896 (0.89,91) 0.0067
2.25 -0.688 -30488 (0.1t9,90) 0.0064
3.SO .O.671 -242SS (o.sg,ss) O.OOS7

41.75 -0.663 -22807 (1.02,g6) 0.0050
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10.38 -0.$43 -6606 (2.29,84) 0.0028

14.75 -0.40S -2748 (2.79_SO') 0.0014
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Table I - The decay of the symmetric array.

In addition to the vortex descriptors, an integral

parameter known as the "kinetic energy ratio" (/_) is also
calculated for each orossplane data grid. /z is defined as
follows:

= KEt/KE,,

¼//KEt = p(v,. -t- v_) dA,

1

(4)

where p is the fluid density, and A_ is the area of
a 30 degree pie-sector in the pipe. Table 1 fists the

three descriptors, and kinetic energy ratio for the vortex
captured in the 11 crossplane grids shown in Figure 5.
The units of Table 1 are SL The "inviscid airfoil theory"
estimate of vortex circulation is derived from Prandtl's s

result for a wing of elliptical planform:

P = _'cv_a (5)
1 + 2/AR'

where the aspect ratio of the vortex generator is AR =

4x span�re. Note that when performing this calculation,

use span = 2h (refer to Figure 3), due to the wall effect

or "image vortex generator". Uncertainty estimates for all

listed quantities are given in Table 1. These are derived

by combining the uncertainties in measured velocities

and probe placement in accordance with the procedure

outlined by Moffat. 9

The results listed in Table 1 are plotted in Figures

6 a-c.

Figure 6a plots the axial distribution of embedded

vortex circulation. The shape of the curve demonstrates
two mechanisms of circulation decay affecting the em-
bedded vortex. This is similar to what is outlined in an

earlier study on the decay behavior of embedded vortex

arrays on a flat plate. 1° Just downstream of the vortex

generator, the viscous vortex core is close to the wall and

isolated (by surrounding regions of near-zero streamwise

vorticity) from neighboring vorticies. Refer to Figures
5a-d. The dominant mechanism of circulation decay is

through the action of wall friction, which sets up a span-

wise component of wall shear stress opposing the ro-
tation of the core. As the neighbor vortex core draws

near and lifts the vortex away from the wall, the rate of

circulation decay due to wall friction effects drops (Fig-

ures 5e-f). When the core vorticity profiles of vortex and

neighbor begin to "touch" (recall that they are of opposite

sign) another mechanism of circulation decay begins to
dominate (Figures 5g-k). This is circulation loss through

vorticity diffusion across core boundaries. Rapid losses

in circulation, peak vorticity, and kinetic energy ratio oc-
cur downstream of the location where this mechanism of

circulation decay is prominent.

Figures 6b-c plot the decay of peak vorticity and

kinetic energy ratio as given in Table 1.

Modelling Results

The large number of parameters to consider when

designing a vortex generator array for an aircraft com-

ponent, such as a wing or inlet, has the implication that

experimental work on optimum array geometries is of-

ten slow and expensive. This fact has motivated a few

workers in computational fluid mechanics to assist in the

optimizing problem by including a means of representing

vortex generators in their codes. A simple and effective
means of doing this is to employ a model for the cross-

plane velocity or vorticity field induced by the generators.

This is the approach taken in recent work by Anderson
et al. 3"2 who examined multiple vortex generator array

geometries in a diffusing S-duct inlet using a parabolized
Navier-Stokes (RNS) solver. A similar inclusion of em-

bedded vortices in a full Navier-Stokes (FNS) code was



implementedbyChoandGreber 11 for a constant area cir-

cular duct and a diffusing S-duct geometry. The advan-

tage of this approach lies in the fact that a newly formed

vortex may be accurately represented in this manner.

Experimental workers concerned with embedded

vortices have often noticed the close similarity of

observed crossplane vortex structure to simple two-

dimensional models of vortices. Inviscid or "potential"

models were first applied to results obtained in subsonic
diffusers by Grose and Taylor./2 Later, Pearcy 13 would

develop embedded vortex interaction models based on

the inviscid representation of embedded vortex sU_cture.

Eibeck and Eaton 14compared the structme of a single em-

bedded vortex to that of the patchwork "Rankine" model

vortex. Studies by Pauley and Eaton 15 and Wen& et
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Figure 6 Decay Behavior of the Symmetric Array.

aLtO. 16 have made comparisons to the "'ideal viscous" or
"Oseen" model.

Let us now examine the equations of the Oseen

vortex and show how the array of embedded vortices

examined in this study may be represented using a simply
constructed model based on this vortex.

The Oseen Model of the Embedded Vortex Array

The two-dimensional Oseen model of a viscous vor-

tex represents the time dependent decay of a potential

vortex where the velocity at the origin (r = O) is forced

to zero at time t = 0. A single isolated vortex cen-

tered on the crossplane origin has velocity components

(in cylindrical coordinates):

_']r "-" 01

(6)

where F is the vortex circulation and u the laminar

coefficient of kinematic viscosity. Following Squire 17

the unsteady solution is transformed to a steady one by

relating the decay time to the distance between the vortex

generator tip and the crossplane of interest (z - z0):

Z -- Z 0

t ._ _ (7)
Uoo

For an isolated turbulent vortex i located at:

(zi, Yi = ri cos Oi, ri sin Oi) (8)

the velocity components in the crossplane can be written

in terms of the vortex descriptors. 18 In cartesian coor-
dinates:

r,(x- _i)

_- _-_ r,, (9)
I',(y- _)

w_ = 2_rR_ F_I

where:

ny = (_ - x_)2 + (y - u,)_, (10)

and:
7r_3m ax 2

The vorticity field is given by:

(11)

w_ -- w'_a=(1 - Fi). (12)

We can superimpose solutions for a representation of the

pipe wall and other array vortices. Figure 7 illustrates

this construction. Each of the 12 vortices in the array

is located a distance R_ from the pipe centerline. To

represent the influence of the wall on each vortex in the

array, an image vortex is superimposed a distance R.., =
R_/Rv in accordance with the procedure outlinedby

Mihle-Thomson. 19 The angle e = 30 ° for all test cases in

this study. In each test case, the descriptors of all vortices



and images are determined from symmetry following
Table 1 and Figure 7. For example, the angle _ between

the center of the vortex and the line of flowfield symmetry

between upflow vortices is repeated at regular intervals

around the pipe. Also, the magnitude of circulation

and peak vorticity is assumed to be the same for all

vortices and images in each test case, differing only in

sign, depending on the rotation of the vortex or image
vortex. With these constraints on the array geometry the

equations of the model are simply:

12

12 m E(1)i "]- 12i ira),

i=l

12

11) = E (113i + Wiira)'

i_--1

(13)

where the i im subscript denotes the appropriate expres-

sion from Equations 9-11 for the image vortex i.

Data and Model Comparisons

The data and model are compared at the z = 1.00

chord survey position. The vortex descriptors are taken

directly from Table 1 and used in Equation 13. Fig-
ures 8a-b illustrate the resulting comparison. Figure 8a

compares the transverse velocity and streamwise vorticity
fields of the data (top) and model (bottom) vortex arrays.

Note the close similarity of the transverse velocity fields.

Since the model is two-dimensional, representation of the

secondary (or "wall") generation of opposite-sign vortic-

ity, found in the data, is not possible. This is evident in

the comparisons of the streamwise vorticity fields. Define

"--..%

¢,

Pipe

o.O.o'°

R im -- R2/Rv

Figure 7 The construction of an Oseen model of an

array of 12 symmetrically placed vortices in a pipe.

a fit parameter based on the transverse velocity:

(14)

Figure 8b is a contour plot of this parameter over the

survey grid The shaded areas represent regions where

the fit parameter exceeds 1.00 (or "100 percent"). Lim-

ited probe resolution of the weak velocities in these areas

8 _lqmm @ dllm.
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, x..fc.'y"--_ ,
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data

model e _ e
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a) Transverse Velocity and Streamwise Vorticity Comparisons
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b) Contours of Fit Parameter

Figure 8 A comparison of the data and model a) data and model transverse velocity
and streamwise vorticity fields, b) contours of the fit parameter (Equation 14).



is the most probable cause of the large discrepancies. It

is encouraging to note that where the convective effects

of the vortex are strongest the model best represents the

data. The viscous core, the region of strong crossflow

underneath the core, and the upwash and downwash re-

gions to either side, ate all within the 40 percent contour
of the fit pamn_ter.

Summary

An experimentalstudyisconducted toexamine the

crossplaneflow stxucture,interaction,and streamwisede-

cay of an arrayof counter-rotatinglongitudinalvortices

embedded ina turbulentboundary layeron the wall of

a straightpipe. The vorticesare shed from a symmet-

ricarrayof NACA 0012 airfoilvortexgenerators.The

span of the vortex generators above the flow surface, h,

is approximately equal to the localboundary layer thick-

ness, 6. The ratio of boundary layer thickness to pipe

diameter is 6/d = 0.04, and the core Mach number =

0.25. Measurements of mean three-component velocities

in downstream crossplanes are used to characterize the
structure of the shed vortices. Measurements in adjacent

crossplanes, closely spaced along the axial coordinate,
characterize the vortex-to-vortexand vortex-to-wallin-

teractionand streamwisedecay of vortexstructure.

Downstream of thevortexgenerators,theshed vor-

ticesare observed forming upflow pairs. The convec-

tive effects of each vortex on its neighbor drive the pair
away from the wall, initially mitigating the wall-fiiction

driven decay of circulation and peak vorticity. Further

downstream, the rate of decay is enhanced when vortic-

ity diffusion occurs across core boundaries in the closely

spaced vortex pairs.

The velocity field of the embedded vortex is well

represented with a model constructed by the superposition
of Os_n vortices. Variation in the transverse vector

field between the data and model is less than 40 percent
in crossplane regions containing the vortex core, vortex

downwash, upwash, and near-wall crossflows.

Future Work

This study will be extended to examine the depen-

dence of vortex generator geometry (h, c, a) and imping-

ing flow conditions (Mach, 6) on the shed vortex de-

scriptors. A paper on this topic should be ready early
in 1996.
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